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B 1.1 Technical and Economic Importance
of Extruders
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1.1.1 Extruder Types and Terms

Screw machines are used for many process technology tasks. Normally the appli-
cation takes place in continuous processes in which a screw machine can execute
several process tasks simultaneously. It is a “multifunctional” machine. Although
screw machines are able to do far more than extrude, mostly the term extruder is
used. In the older German use of language also the terms “press” and “kneader”
have been used. Corresponding to the old rubber screw presses, screw machines/
extruders for plastics have initially been named plastic screw presses. This has
been expressed for example by the title “Screw Presses for Plastics” of the first
edition of the book of Gerhard Schenkel in 1959. The second edition of 1963 was
renamed to “Plastic Extrusion Technology” [1]. Consistent with the current book
title “Co-Rotating Twin-Screw Extruders” both terms, screws and extruders, have
been “incorporated” into the book at hand.

Werner & Pfleiderer acquired licenses from Bayer for twin-shaft, exactly self-wiping,
closely intermeshing co-rotating screw machines (see Section 1.2). They were
named “ZSK”, and this term was for a long time a synonym for this screw type. The
term “ZSK” of Werner & Pfleiderer (today Coperion) is according to the former staff
member and author Heinz Herrmann an abbreviation for Zweiwellige Knetscheiben-
schneckenpresse (“twin-shaft screw compounder” in German; [2], p 179). Today the
term is mostly shorted to “twin-(shaft)-screw kneader”.

For this machine type many synonyms are in use, for example:
® Co-rotating twin screws (tightly intermeshing or non-intermeshing)
® Co-rotating extruder
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® Co-rotating, closely intermeshing twin-shaft screw
® Co-rotating twin-screw extruder

® Co-rotating double-screw extruder

® Co-rotating twin-shaft extruder

The closely intermeshing twin-shaft screw with co-rotating shafts occupies a dom-
inant position among the “extruders” and is applied in a variety of processes. An
important application is found in the production, compounding, and processing of
plastics. The co-rotating screws are also used in other industry sectors, e.g. the
rubber and food industry.

1.1.2 Screw Machines and Plastics

The history of the plastics is very short, compared with the history of other materi-
als (e.g., wood, metal, ceramic). The tremendous growth is very clearly illustrated
in Figure 1.1.
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Figure 1.1 Diagram relating to the development of plastics worldwide during the last decades
(ordinate: million tons) [Plastics Europe Deutschland e.V.]

What is the connection between the extruder and plastics production?

The success of the plastics industry is closely connected to the success of the ex-
truders. Initially plastics were exclusively compounded discontinuously. This
causes, however, economic limits at increasing production quantities. Further-
more, larger quality variations of the material were caused by discontinuous com-
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2 Basics - Screw Elements

centerline distance. The flanks merge tangentially into the root area. The diameter
of the root area corresponds to the diameter of the screw core, and its center is the
center of the profile. The tip cleans the root of the opposite screw and vice versa.
The corner of the profile between the tip and the flank cleans the opposite flank.
This is the basic geometry first described in [3].

2.1.2 The Fully Wiped Profile from Arcs

The basis of closely intermeshing profiles is the fully wiped screw. The individual
sections of the profile of the fully wiped screw are arcs. This can be explained on
the basis of the kinematic equivalence in which the rotation of the screws is re-
placed by holding one screw in a fixed position and rotating the other in a circle at
a radius equal to the centerline distance.

The first screw (the “generated” screw) is held still in this consideration, and the
second screw (the “generating” screw) is moving. After prescribing a part on the
generating screw, it is investigated what sort of profile will be generated on the
generated screw. In a sense, the generated screw is “cut out” by the generating
SCrew.

First, a point on the generating screw is considered. This point is situated where the
tip and the flank merge. This point, together with every other point on the second
screw, moves on a circular trajectory with the radius equal to the centerline distance
around the first. Examining this line, one obtains the flank; see Figure 2.2.
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Figure 2.2 Generation of the flank from the transition point between tip and flank of the
generating screw
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Let us now consider the tip of the generating profile as an arc of radius R. The cen-
ter of this arc rotates at distance A from the center of the first profile. The contact
point between these two profiles, which lies on the root of the generated profile, is
always on a line connecting the two centers and is at a distance RI = A — R from the
center of the first profile; see Figure 2.3.

Just three variables are required to describe a fully wiped profile (Figure 2.4):
® external diameter DE
® centerline distance A
® number of threads Z

M;Z;\ M1 = Center of generated screw

M2, M2' = Center of generating screw
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Figure 2.3 Generation of the root as an arc by the tip of the generating screw
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Figure 2.4 Geometric variables of a fully wiped profile
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Figure 2.53 Barrier elements

In the case of eccentric discs (Figure 2.54) or oneflighted kneading discs with an in-
tegrated extensional channel, an extensional flow in the peripheral direction oc-
curs. Eccentric discs are cylindrical discs that are arranged eccentrically to the
screw shaft. The product is drawn into the tapering eccentric gap by the rotational
movement of the discs and is thus extended. However, the flow is not led in the
axial direction so that parts of the product can deviate up- and downstream and
particles are not subject to any defined extension.

Figure 2.54 Eccentric discs



2.2 Screw Elements and Their Use

Figure 2.55 Single-flighted kneading discs with extension channel

In one-flighted kneading discs, the eccentric disc is contained on both sides by a
one-flighted profile disc. The polymer that is drawn into the extension channel can
no longer escape to the sides and thus is subject to the full extension flow as de-
fined by the geometry.

In similar fashion to the kneading discs, both disc implementations can be com-
bined into larger element units.

In the screw shear elements (Figure 2.56), shear gaps are worked into the screw
crest section by section. In these gaps, a portion of the melt is exposed to a defined
shear field in order to disperse higher molecular polymer content, for example.
One should bear in mind with these elements that the stress of the material does
not occur quantitatively across the entire product stream.

Figure 2.56 Screw shear elements

145
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2.3.1 WO 2009152910, EP 2291277, US 20110110183

Filing date: 2008-06-20
Company: Bayer Technology Services, now Covestro

This patent shows universally how one- to four-flight, self-cleaning screw profiles
can be constructed from circular arcs using symmetries. Furthermore, the patent
discusses how complete, self-cleaning screw profiles can be created from circular
arcs using a transition element as an example.

1) R=05800 Mx=0.0000
o=08315 My = 0.0000
2) R=00000 Mx=0.3908
o=02094 My =04286
3) R=07500 Mx=0.0714
o=04398 My=-0.2500
3) R=02500 Mx=0.0714
o= 04399 My = 0.2500
2) R=1.0000 Mx=0.3908
=02994 My =-04286

1) R=0.4200 Mx=0.0000
o=0.8315 My=0.0000
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Figure 2.59 ~—_ _——"RA=05800

Figure 2.60
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2.3.2 WO 2011039016, EP 2483051, US 20120320702

Filing date: 2009-09-29
Company: Coperion, formerly Werner & Pfleiderer

In this patent, the section of a screw profile is obtained over an evolute E, which
consists of a set of points P(1) to P(n). The involute of a point-shaped evolute is a
circle (arc), so that in the end, the design rule shown is also based on circular arcs.
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Figure 2.61



3.1 Rheological Properties of Polymer Melts

Figure 3.2 illustrates a classification of the rheological behavior of solids and flu-
ids. Examples of different flow behaviors are shown in the lowest boxes. Figure 3.2
also illustrates the resulting shear stress as a function of the (shear) deformation
~ or, for fluids, the shear rate = . The two most important material properties for
our discussion in this chapter are the viscoelastic and the Newtonian fluid circled
in the figure.
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Figure 3.2 Different types of rheological behavior of solids and fluids with examples of
materials [7]. Bottom: shear stress as a function of the deformation ~ or shear rate <~ and
shear viscosity n as a function of the shear rate < (double-logarithmic axes)

In the case of solids it is evident that deformation is either linear elastic - like a
Hookean solid (most solids including steel and rubber) - or non-linear elastic or
viscoelastic. In the case of liquids, fluids differ between those without yield stress
and those with yield stress (so-called plastic materials). Fluids without yield stress
will flow if subjected to even slight shear stresses, while fluids with yield stress
start to flow only above a material-specific shear stress which is indicated by o,

In the case of fluids without yield stress, viscous and viscoelastic fluids can be
distinguished. The properties of viscoelastic fluids lie between those of elastic sol-
ids and those of Newtonian fluids. There are some viscous fluids whose viscosity
does not change in relation to the stress (Newtonian fluids) and some whose shear
viscosity n depends on the shear rate < (non-Newtonian fluids). If the viscosity
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increases when a deformation is imposed, we define the material as a shear-thick-
ening (dilatant) fluid. If viscosity decreases, we define it as a shear-thinning fluid.

In the case of fluids with yield stress, viscoplastic fluids differ from elastoplastic
fluids. With the application of a shear stress ¢ above the yield strength o¢,, Bing-
ham fluids show a linear dependence of shear stress on shear rate, whereas Casson
and Herschel-Bulkley fluids show a nonlinear dependence on these parameters.

Newtonian fluids display the simplest rheological behavior. They show a constant
viscosity n and there is a direct proportionality between the shear rate < and shear
stress o:

a=1n-9 (3.4)

Non-Newtonian fluids whose viscosity depends on shear rate can be described us-
ing a power law:

o=K-(3) (3.5)

Equation (3.5) contains a constant factor K and a varying factor n, which specifies
the slope of the of the viscosity function. For Newtonian fluids, K corresponds to
the shear viscosity n and n= 1. For 0 <n <1, the fluid is a shear thinning fluid.
For shear-thickening fluids, i.e. liquids, whose viscosity increases with shearing,
1<n<e,
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Figure 3.3 Graphical illustration of Equation (3.6)

Figure 3.2 and Figure 3.3 show the sub-division of fluids into those with and with-
out yield stress. Fluids with yield stress require a shear stress g, in order to flow.
We are all familiar with this characteristic from tomato ketchup, which requires a
certain “minimum force” before it starts to flow out of the bottle. Below ¢ it is still
a solid - in rheological terms. This behavior is described in the model by adding a
shear stress ¢, to Equation (3.5). We then obtain a Herschel-Bulkley correlation:
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Instantaneous and Average Mass Flow Rates

For the design of machines like extruders or other devices for sorption processes
the knowledge of the concentration profiles at the phase boundary alone is not
sufficient. However, it forms the basis to derive relationships to estimate the mass
fluxes caused by diffusion between the phases. Suitable reference values for the
dimensionless representation of mass flow rates result from the individual applica-
tion. For this reason, the results for instantaneous and average mass flow rates are
not presented here in dimensionless groups. Only the relationships for the mean
liquid concentration are presented again as a dimensionless group.

From Equation (3.26) for the local concentration gradient at the phase boundary at
x = 0 the following relationship results:

dp;

= =P (3.42)
ox| | NG )t

With this expression and Fick’s first law, Equation (3.26), it follows for the mass flux
diffusing from the liquid element at the phase boundary into the gas phase 7, :

. ! Dl
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(3.43)

The relationship given by Equation (3.43) describes the diffusive mass transport
on the liquid side of the phase interface. Both the proportionality /i, ~(p, , =,
aswell as m, ~ \,? D, /t are typical of this kind of molecular mass transport.

For many practical tasks, instead of the instantaneous value of the mass flux 7,
information about the time average value /ﬁ, in the time interval ¢, <( <, isre-
quired. With the mathematical definition of the time average value and Equation
(3.43) for m, it follows:

i, = — )ﬁmn?hm PP i (3.44)

With this relation the time average of the mass flux IiI/ for any time interval
[, =t<t, can be calculated. With regard to the limit

. {
lim |-
{ il

(3.45)

= ’ 27"

for ¢, —t, then /fz, = m, applies, as shown in the comparison of Equation (3.44)
with Equation (3.43).



3.3 Diffusive Mass Transport in Polymers

For the time interval 0 <¢ <, the relationship is simplified because of ¢, =0:

"’
L (3.46)
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V7

The time average value i1, for the interval 0 < ¢ < ¢, differs in this case from the
instantaneous value m, at time ¢ =, by a factor of 2.

By integration of the mass flux m, or nﬁ) over the phase interface S the instanta-
neous and average mass flows diffusing over the phase interface are obtained. For
the average mass flow M/ in the time interval 0 < ¢ < ¢, it follows:

- 2 o O 1/
My =—==(p,0— ;) 0/ [[ tdS (3.47)

V7T

The integral expression considers that the phase interface S can vary with time
and that different values are possible for the time interval 0 <¢ < ¢, in which a
liquid element is present at the phase interface.

I

Multiplying the average mass flow \7 with time (, gives the mass AV, ex-
changed by diffusion between the phases in the time interval 0 <t <¢, :

AM, = M t, fé(,,, —p,a)D '”'1‘, S (3.48)

/ I
N

Equations (3.47) and (3.48) indirectly represent the basic relationship between
diffusive mass transport over a phase interface and the relevant parameters of the
liquid system, the operating conditions, and the geometry. The direct dependency
can only be derived from the specific application by determining the individual
values for liquid properties, operating conditions, and geometry for each of the
variables on the right side of Equations (3.47) and (3.48).

With the relationships reported here for the instantaneous and average mass flow
rates, it is common practice in process engineering to define mass transfer coeffi-
cients. This historically caused procedure is also used to describe the mass trans-
port in screw machines [8-10]. However, it does not provide any additional infor-
mation in the theoretically deduced relationships for mass transport, but it requires
additional calculation effort in the application [1]. Therefore, no mass transfer co-
efficients are introduced here but direct relationships to determine the mean con-
centration of the volatile species in the polymer melt are derived from the mass
balance.
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Table 3.12 Material: PS; Wedge Gap Opening Angle: a = 40

5
Vh yyxtothz ytothz xtoch xtoch 0-10
inmm s™! in Pa

1200 982.8 56.6

2400 6.6 1238.6 67.7 4.2 764 2.8

3600 6.6 1411.2 74.7 4.3 1173 3.1
In the six tables it can be seen that the total shear deformation 7,,,,,, ata given
wedge gap geometry is independent of the moving plate speed v, and the mean
total deformation ~, ,, increases with the mean planar stretching e . in all

plastic melts. The achievable mean Hencky strain =, , is high for the more vis-
cous and more pronounced pseudoplastic melts. The strain induced deformation
for each individual drop of the melt lies at a very high level. The high mean strain
rates are increased with increasing moving plate speed v,. The mean tensile
stress reaches values of o =10" Pa for the highly viscous PE-HD melt. This was
measured by Hiirlimann [11] with a capillary rheometer. At the capillary exit melt
fracture was observed. Bernnat [9] verified with in rheotens experiments compara-
ble critical tensile stresses. Also at lower strain levels drop breakage is possible on
a large number of melt drops when they are exposed to much higher local tensile
stresses in the wedge gap. In general one can find that for more pronounced pseu-
doplastic flow behavior of the melt the wedge gap geometries with a large opening
angle « are more effective. Furthermore, the increase in total shear deformation
can be adjusted over the flat gap length. The total mean elongation, the mean strain
rate, and the mean tensile stress are adjustable over the moving plate speed v, .

3.5.1.4.5 Deborah Number Depending on the Moving Plate Speed

The Deborah number De (Equation (3.99)) was calculated for the six plastic melts
in the wedge gap (/, =0 mm) for two moving plate speeds. The results are summa-
rized in Tables 3.13 and 3.14.

Table 3.13 Deborah Number e for Six Plastic Melts in the Wedge Gap with the Moving Plate
Speed v, = 1200 mms ', a =15° [, =4 mm

A

TN S 7V = =

t inms 7.9
De 0.16 0.13 285 4.1 16.4 77.5
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Table 3.14 Deborah Number e for Six Plastic Melts in the Wedge Gap with the Moving Plate

Speed v, = 3600 mm s ' a=15°, [, =4 mm

t.in ms 2.6 2.6 2.6 2.6 2.5 2.5

De 0.49 0.38 858 12.4 49.2 232
Already at the moving plate speed v, = 1200 mm s " the Deborah numbers are

significantly larger than 1 for the more pronounced entropy-elastic melts (with
higher B-value of the Carreau approach, Equation (3.88)), so the viscoelastic melt
drops show more the deformation behavior of a solid body. That means drop break-
age due to the viscoelastic properties of the melt is favored when the characteristic
relaxation time is sufficient large and the residence time of the melt in the wedge
gap is sufficiently short (i.e., short wedge gap length with a few millimeters /, and
large wedge gap angle a). At lower disc speeds the Deborah numbers are smaller
and the tensile stresses obtained are too low for a drop size reduction.

3.5.1.4.6 Local and Average Dissipative Temperature Increase
in the Wedge Gap/Flat Gap System

The temperature increase in the melt by shear, planar elongation, and resulting
total deformation at the exit of the wedge gap/flat gap system are plotted over the
y-coordinate in Figure 3.61. The temperature of the melt rises very sharply on the
fixed wall. The dispersive shear element can heat up and the dispersive mixing
effect can be reduced. Therefore the geometry and the circumferential speed of the
shear element must be adjusted due to the flow behavior and the thermal proper-
ties of the melt.

—— Heat dissipation by elongation
= Heat dissipation by shear
= Heat dissipation by total deformation
PS
v =600 mms™
lktle =12 mm
o =20°

2 4 6 8 10
local temperature increase AT in °C

Figure 3.61 Local temperature increase for a PS melt at the wedge gap /flat gap exit
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4 Conveying Behavior, Pressure and Performance Behavior

screw tips. Figure 4.80 shows the temperatures directly on the screw surfaces. The
color scale in the two illustrations ranges from 300 °C (blue) to 350 °C (red). In
addition, Figure 4.81 shows a diagram which displays the maximum temperature
on the screw tip over the rotation of the conveying element.
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Figure 4.79 Temperature of the polymer melt in the cross-section of a conveying element with
adiabatic walls after a half turn and after two turns, each with a detailed enlargement around
one of the screw tips



4.7 Computational Fluid Dynamics
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Figure 4.80 Temperature of the polymer melt on the screw surface of a conveying element
within two revolutions

Since most of the heat is generated directly in the vicinity of the screw tips, the
temperature initially rises to 339 °C within half a revolution. Afterwards, a signifi-
cantly slower temperature rise can be observed on the surface of the screw tip.
This is due to the fact that the heated fluid continuously leaves the tip area and
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