There are many different methods for welding two parts together. All variables, such as materials, design, and conditions under which the finished product will be used, including cost of the process, must be considered when deciding which welding technique should be employed.

Polymers can be melted, and therefore welded, using relatively little energy. Heat, friction—even ultrasonic vibrations and radio frequencies—can be used to create the melting necessary for a polymer weld. Welding methods include ultrasonic welding, ultrasonic heat staking, hot plate welding, spin welding, vibration welding, and laser welding. Welding requires no additional materials with one exception: electromagnetic welding, which requires bonding agent consumables.

5.1 Ultrasonic Welding

The principle behind ultrasonic welding technology is based on vibration. One of the parts being assembled is vibrated against the other, stationary one. Heat generated through vibration melts the materials at the joint interface to accomplish the weld. Thermoplastics are the only polymers suited for this process. Thermoset materials do not melt when reheated because of their intermolecular cross-links.

5.1.1 Ultrasonic Equipment

The type of equipment required for an ultrasonic welding process depends upon the size of the manufacturing operation. The ultrasonic welding equipment requirements of a large-volume production environment will be different from those of a small prototype operation. They will, however, be very similar in principle.

A typical ultrasonic welding system consists of a power supply, also referred to as an ultrasonic generator; a converter, also known as a transducer; a booster; and a horn (see Fig. 5.1). The horn is a metal bar designed to resonate at a certain frequency, delivering the actual energy to the parts to be welded. The converter, booster, and
horn are mounted inside a frame, which can slide along the stand, allowing them to travel vertically under the power of a pneumatic cylinder. The pressure applied by the air cylinder can be preset for manual systems or fully controlled by a computer for automatic systems. The pressure, trigger pressure, stroke speed, and stroke travel are all adjustable through the control panel or by the computer. The two palm buttons are used by the operator to activate the machine.

To generate the necessary amount of vibration required for a particular assembly, an electrical current is passed through a stack of crystalline ceramic material that possesses piezoelectric properties, which allow the material to change its size. The electric power supply has a frequency of 50 to 60 Hz. Once an electric current is applied, the material expands and contracts at a very high frequency, converting the electrical energy into mechanical energy or vibrations. These vibrations occur with frequencies ranging from 15 to 70 kHz. The most common output in ultrasonic welding systems provides frequencies of 20 to 40 kHz.

The distance the mechanical vibrations travel back and forth is called the amplitude. A typical converter of 20 kHz could have amplitudes of 0.013 to 0.02 mm (0.0006 to 0.0008 in.) between its maximum expansions and contractions.
There are different types of ultrasonic welding systems for different applications. An integrated welder (see Fig. 5.1) is a self-contained unit, which has a power supply, actuator, and the acoustic components packaged as a stand-alone system. Advantages of this type of system include low investment cost and ease of service.

Modular systems include, in addition to the welder, a rotary indexing table and an in-line conveyor. These systems are ideal for assembling large numbers of parts. Also, their components are interchangeable and easy to upgrade.
Figure 5.3 Mobile ultrasonic workstation. An aluminum top plate acts as the base plate for the press table. The generator and controller are on the recessed shelves (Courtesy of Dukane Corporation)

Modular systems are available in semiautomatic and automatic models. Automatic systems include a pick-and-place robot arm.

Power level is frequently determined by the cycle time or the material used in a given application. Power supplies are available from 150 to 3,200 W for the 20 kHz machines, and from 150 to 700 W for 40 kHz systems.

Controls are integrated into the power supply and may be analog or digital. Digital controls are computer controlled.

The frame or box contains the converter. The vibration produced by the converter must be amplified further in order to produce meaningful results when it reaches the horn face.
5.1.2 Horn Design

When the horn receives high energy in the form of vibrations from the booster, it reaches its resonant frequency. At that time, the ends will expand and contract longitudinally about its center (also called the nodal point of the horn), alternately lengthening and shortening the horn’s dimensions. The movement from the longest length value to the shortest length value at the horn face (the portion of the horn in contact with the part) is referred to as the horn amplitude. The face of the horn is usually machined to conform to the plastic part with which it comes in contact.

The horns are designed as resonant elements with a half wavelength. The materials for horns must have low acoustical impedance (low losses at ultrasonic frequencies) and high fatigue strength.
There are three types of vibrations produced in the ultrasonic welding process. The first type is the **longitudinal wave**. These waves are transmitted in a direction parallel to the horn axis, which is vertical to the stand. The oscillations are a function of the wavelength λ (lambda), both in amplitude and direction. Longitudinal waves (see Fig. 5.5(a)) act as energy carriers to allow a proper weld, and they are the only desirable type of vibrations in an ultrasonic welding process.

A second type of vibration is the **transverse wave**. Typically, transverse waves are electromagnetic waves of very high frequency and can be generated only in the presence of shear stresses. Transverse waves move in a direction normal to the horn vertical axis (see Fig. 5.5(b)). Transverse waves should be avoided because they create vibrations only at the horn surface and not in the entire horn body. As a result, almost no energy is transmitted to the parts to be welded.

The third type of vibration consists of **curved waves**. These waves are detrimental to the ultrasonic welding process and will occur when the system components are out
of balance due to misalignment, for example. This results in uneven pressure reaching the part, creating a nonuniform weld. During the transmission of ultrasonic waves from the transducer to the horn, curved waves returning from the horn to the piezoelectric material could crack the ceramic material. Curved waves generate high compression and tensile loads in the parts being welded (see Fig. 5.5(c)). In order to correct the system imbalance, asymmetrical masses can be placed on the misaligned components to bring the system back into balance. Horns should be designed to completely avoid transverse and curved waves.

Horns are commonly made from aluminum, titanium, Monel metal, stainless steel, and steel alloys. These materials have different properties, which are beneficial for different applications. An important consideration when selecting a horn material is that the material should not dissipate acoustical energy.

Titanium is one of the high-strength materials with the best acoustical properties, and it wears better than other horn materials.

Aluminum, although it does not wear as well as titanium, is the best of the low-strength materials. Aluminum has low amplitude and is appropriate for assembling large parts.

Steel materials are best for low-frequency losses or premiation. Steel has high wear but loses a great deal of its own frequency. It is good for low amplitudes and high wear such as ultrasonic metal inserting.

Carbide-faced titanium is recommended for high-amplitude horns and high-wear applications.

5.1.3 Ultrasonic Welding Techniques

In order to achieve a proper ultrasonic weld, the horn must be applied as close to the joint as possible. To help ensure an accurate weld, a nest or supporting fixture is required to hold the parts together. Fixtures have two purposes: to provide alignment between the parts and the horn, and to provide support to the weld area. The nest is made of chrome-aluminum or epoxy and steel.

Figure 5.6 shows a fixture that provides nesting for the parts as well as accurate location and securing of the part. The fixture holds the part in place by applying a vacuum for the duration of the weld cycle. Once the cycle is completed, the vacuum is reversed to create an air pressure, which ejects the final assembly from the nest.

The majority of fixtures are machined or cast. These manufacturing processes create fixtures that engage the lower part and hold it securely in a given position. Variations in thickness and flatness of the parts close to the joint area can adversely affect the welding process. To accommodate such variations, fixtures may be lined with rubber or rubbery material, such as silicone. Rubber or silicone strips allow the part
to align in the fixture under nominal static loads and act as rigid constraints during the high-frequency vibration phase of the process. They also may help absorb random vibrations, which can often create cracking or melting in regions away from the joint area.

![Figure 5.6 Air-assisted fixture design](image)

There are various factors that influence the ultrasonic welding process. Polymer (material to be welded), part geometry, and wall stock (thickness) all affect the transmission of the mechanical energy to the joint interface. These factors also influence the design of the fixture.

The booster or amplifier regulates the vibration, keeping it at the appropriate level to melt the correct amount of resin in the weld area for the most efficient weld possible. Boosters are made of titanium or aluminum and are color-coded to identify the amount of amplitude they can generate.

The overall ultrasonic weld cycle (see Fig. 5.7) can vary from a fraction of a second up to a few seconds, depending on the part size and joint area. The hold time could be anywhere from 0.25 second to approximately 1 second, again depending on the size and shape of parts to be assembled.

The horn transfers the vibrational energy it receives from the booster to the parts to be assembled. The amount of amplitude the horn receives from the booster depends on the horn design. Different horn designs deliver different amplitudes.
Figure 5.7 The welding cycle

Figure 5.8 shows a stepped horn arrangement, which is a convenient way of modifying the amplitude. By interconnecting horns, one can increase or decrease the amount of amplitude to which the last horn in a series can vibrate. The horn in the middle of the arrangement in Fig. 5.8 is also called the booster horn.

Figure 5.8
Stepped horn arrangement
It is important to avoid overstressing horns when interconnecting them. This could lead to failure of the system through fatigue.

The ratio between the amplitude generated by the converter (also called input amplitude) and the amplitude at the end of the horn in contact with the part welded (output amplitude) is called gain. The gain itself is a function of the transversal area between the converter (input section) and the horn face (output section).

If the cross-sectional area of the output end is less than that of the input end, the gain will be greater than 1 and the corresponding amplitude will increase.

There are different horn shapes for various welding applications. Stepped, conical, exponential, catenoidal, or Fourier horns can be connected at the stress antinodes, the point between two adjacent peaks in the wave pattern. Larger horns (greater than 75 mm or 3 in.) can be constructed with slots cut out to change the resonating frequency by more than a quarter of a wavelength. Each is designed to change the gain to a specific value.

5.1.4 Control Methods

Amplitude is the most important variable in determining the power output for the part to be welded. It is also very important in the horn design. The horn, as mentioned earlier, is a metal bar a half-wavelength long, dimensioned to resonate at a certain applied frequency.

Constant energy is the total amount of ultrasonic energy required by the mating parts and actually delivered to them (Fig. 5.9). There is a time window within the welding process when the total energy is applied to the joint area. The energy is delivered independent of any external influences such as voltage fluctuations. All other parameters, such as time or amount of travel—the downward vertical distance the horn moves during the process—are varied in order to determine their optimum values for a given joint design.

The relatively new computer-controlled ultrasonic systems greatly enhance the process by allowing direct control of the energy transmitted to the parts rather than controlling only the time.

Another technique of control is based on travel. Controlling travel is one way of controlling the weld quality. There are two ways of applying the control method: through partial travel and total travel.
Partial travel implies that the horn is moving downward until it makes contact with the part to be welded. Once the horn makes contact, the circuit is closed by the digital readout sensor, and the ultrasonic is activated (see Fig. 5.10(a), ultrasonic activation point (UAP)). The pneumatic cylinder applies pressure until the top part reaches the ultrasonic deactivation point (UDP). The weld is completed.

Sometimes the partial-travel method is not feasible, for example, when the parts are unstable. In these cases total travel or absolute travel is used. This is the best method when dimensional accuracy is the most important feature of the assembly. When total travel is used, the horn is deactivated only when a preset amount of travel is achieved.

The total-travel method (Fig. 5.11) uses a digital readout sensor mounted on the press to activate the horn before it makes contact with the part. The location of the sensor can be taken from a fixed reference point or by measuring the collapse of the plastic in the joint during the welding process (see Fig. 5.11(a), UAP point). The horn will stay triggered until it reaches the UDP position. Holding time starts once the
preset travel is reached. A signal from the encoder is sent to the computer, which stops the flow of vibration energy to the horn.

![Figure 5.11](image)

Figure 5.11 Absolute- or total-travel method of control (UAP represents ultrasonic activation point and UDP represents the ultrasonic deactivation point): (a) before, and (b) after assembly

While total travel is a preset distance, partial travel is usually limited to the height of the energy director.

Another method of controlling the weld is based on time. The *constant-time method of control* implies that the ultrasonic will be on for a predetermined time (usually 0.2 to 0.3 seconds) while the other parameter will be varied to determine optimum values.

For this method, time can be determined by an experienced operator through trial and error. Part size, materials, and other variables will influence the time selected.

The ultrasonic welding method produces joints with strength up to 90 or 95% of the virgin polymer. In some instances, hermetically sealed joints can be produced ultrasonically.

Another important factor in the welding process is the use of *far field* and *near field*.
The field refers to the distance between the joint weld area and the point at which the horn comes in contact with the part. When the distance is more than 7 to 8 mm (0.25 to 0.375 in.) it is referred to as a far-field weld. When the distance is less than 7 or 8 mm, it is a near-field weld. Special horns can be designed for assemblies requiring near- and far-field welds, but it is advisable to avoid combining near- and far-field welds in one assembly.

![Figure 5.13](image)

Horn position: (a) near-field, and (b) far-field

The frequency to be used in the weld depends on several factors, including the size of the part and the rigidity of the plastic. A general rule is that larger parts and softer plastics require lower frequencies. Sometimes, frequencies as low as 15 kHz may be used for very large parts in excess of 150 mm (over 6 in.). In these cases the horns are also quite large. Conversely, harder plastics and smaller parts require higher frequencies. Far and near fields also affect the choice of frequencies. Near-fields need higher frequencies; frequency decreases as the distance between the horn contact and the joint increases.

Also, the number and accuracy of controls determines the quality of the ultrasonic system. The timer controls the weld and hold time.

The melt temperature, Young’s modulus, and overall structure usually determine the amount of vibration energy required for a specific weld. Rigid plastics exhibit the best weldability properties because they are good transmitters of vibration energy. Soft polymers, on the other hand, have a low value for Young’s modulus or secant modulus. They dissipate the vibration energy, making the part difficult to weld. Softer polymers are, however, well suited for ultrasonic staking, forming, or spot welding.
Amorphous materials tend to soften gradually before melting and flow easily without solidifying prematurely.

Crystalline polymers do not readily transmit ultrasonic energy and therefore need higher energy levels than amorphous resins. Due to their sharp melting point they lend themselves more easily to controls, giving assemblies made from these materials a narrow margin of variation from part to part.

Mold-release agents such as zinc stearate, aluminum stearate, fluorocarbons, and silicones are not compatible with this process. If molding agents must be used in the molding process, a paintable grade should be selected. Incompatible agents can be removed with a Freon TF solution for crystalline polymers or a 50/50 solution of water and detergent.

5.1.4.1 Common Issues with Welding

As with any manufacturing process, problems may occur. The following is a list of common problems associated with ultrasonic welding, their probable causes, and possible solutions.

Overweld is usually caused by too much energy reaching the part. It can be corrected by reducing the pressure exerted by the pneumatic cylinder or by reducing the overall weld time. Other possible solutions include slowing the air cylinder motion and the use of a power control.

Nonuniform welds around the joint could have many possible causes. Warped parts could be one of them. The part dimensions, tolerances, and general processing conditions should be reviewed. A higher trigger pressure could be one of the solutions.

If the nonuniformity is created by the energy director’s variance in height, the energy director should be redesigned. The problem could also be caused by a lack of parallelism between the horn, the nest, and the parts.

Sometimes flexure of the walls is the cause of nonuniformity. Ribs can be added to the part, or the fixture can be modified to prevent outboard flexure.

A knockout pin location in the joint area can result in an uneven weld. The knockout pin should be moved away from the joint area. Also, the knockout pin marks should be flush with the surface.

Insufficient support in the fixture can lead to nonuniformity. Improving support in critical areas, redesigning the nest, or switching from a flexible fixture to a rigid nest design may solve the problem. Sometimes the pressure from the pneumatic cylinder will cause larger sections of some parts to bend. This can be corrected by adding a rigid backup.

Tighter part tolerances or molding parameters are needed when the part tolerance is not within the part requirements.
Improper alignment is another possible cause of a nonuniform weld appearance. This can result from the part shifting during the weld cycle. Provisions for alignment in the mating parts need to be reviewed, and parallelism between the horn, part, and fixture should be rechecked.

A lack of intimate contact between the horn and the part can also cause a non-uniform weld. One has to make certain that there are no sink marks, raised symbols, or other inconsistencies to impede contact.

The presence of a mold-release agent on the part surface could also cause uneven welding. As mentioned earlier, parts should be cleaned prior to welding. If possible, a paintable mold-release grade should be used.

Fillers can also affect weld uniformity. If that is the case, processing conditions should again be reviewed, and the amount of filler should be reduced if possible. Also, the filler type—short fiber vs. long fiber—should be verified. It is also advisable to check for uniform filler distribution.

If the nonuniformity is a result of cavity-to-cavity variations (a cavity is an empty volume in a closed tool that becomes filled with polymer during the molding process), there will be a need to conduct a statistical study to determine if a pattern develops with certain cavity combinations. Both the cavity and the gate (the space provided in the tool for the molten polymer to reach the cavity) should be checked.
for excessive wear. This is particularly important for fiber-reinforced polymers, where wear is a major issue.

The percentage of regrind or degraded plastic in the material could be a problem. If so, the molding parameters should be verified and the percentage of regrind should be reduced. If the regrind is absolutely necessary, its quality should be consistent.

Drops in the pneumatic cylinder pressure should be combated by increasing the output pressure for the compressor. A surge tank with a safety valve may be added.

Changes in line voltage contribute to uniformity problems. This can be solved with a voltage regulator.

Marking is a welding deficiency that can have many different causes, a common one being an overheated horn. When this occurs, check for loose studs and a loose tip. Other possible solutions are simply to cool the horn, check that the coupling of the horn and the booster is correct, and ensure that no cracks are present in the horn. If the horn is made of titanium, the problem could be solved by switching to an aluminum horn. If the horn is made of steel, the amplitude should be reduced.

If marking is caused by localized high spots in the part, such as lettering or symbols, the horn will need to be redesigned in order to properly fit the part. Another solution may be to recess the lettering or symbols.

![Figure 5.15 Ultrasonic handheld welder with replaceable horn (tip) (Courtesy of Sonics and Materials, Inc.)](image)

Marks are often caused by the presence of aluminum oxide at the interface of the horn and the part. Aluminum oxide can be eliminated by using a chrome-plated horn and/or fixture or by applying a polyethylene film between the horn and the part.

Marking can also be created when a long weld cycle is used. Marking can be eliminated by reducing the overall weld cycle. This can be accomplished by lowering the amplitude or the pressure and adjusting the dynamic trigger pressure.
Flash in the weld can be the result of an energy director that is too large. Reducing the energy director size, reducing the weld time, and reducing pressure are all possible solutions. If the flash is caused by shear interference that is too great, the problem may be overcome by simply reducing the amount of interference. Flash can also be caused by poor part tolerances (too tight) and by nonuniform joint dimensions.

Misalignment of the welding assembly, which might suggest a poor initial design, could indicate the need for an alignment feature to be added to the parts. If improper support in the fixture is causing the misalignment, redesigning the fixture is recommended in order to provide proper support. Another option may be to shim the fixture. When misalignment is caused by wall flexure, with large sections deflecting, the addition of a rigid backup is suggested. Or the source of the misalignment problem may lie in improperly dimensioned joint design, in which case the parts must be redimensioned. Part tolerances and poor molding could also be the cause. Part tolerances should be tightened and molding conditions checked.

Internal components damaged during welding. This could be caused by excessive amplitude, which can be reduced by switching to a lower frequency. If long weld time is the cause, reduce weld time by adjusting the amplitude and/or pressure as well as the dynamic triggering pressure.

Internal damage can also be caused by too much energy entering the part. This can be corrected by reducing the pressure, weld time, or amplitude, or by using a power control. Also, proper mounting of the internal components should be verified. Sometimes a simple solution will be to isolate them from the housing or move them away from the area of high-energy concentration.

Melting or fracture of part sections outside the joint area. This problem is usually caused by sharp internal corners. In this case, a fillet should be used to radius or “round out” both the internal and the external corners. The correct internal radius should be equal to half the wall thickness. An external radius must be 1.5 times the wall stock.

If excessive amplitude is the cause, it can be reduced by changing to a lower booster. Fractures and melting can also come as a result of long weld time, in which case increased amplitude, increased pressure, or adjustments to the dynamic triggering pressure could correct the problem.

5.1.4.2 Joint Design

Joint design is a crucial component in successful ultrasonic welding. The design of the part and the materials used are important considerations in determining which joint design will be utilized.
5.1.4.3 Butt Joint Design

The butt joint design, also known as an energy director joint design or tongue-and-groove joint design, is appropriate for welding parts made mostly from amorphous resins, which lend themselves well to ultrasonic welding.

The joint should contain an energy director, which is a triangular protrusion or peak at or near the center of one of the faces. The peak provides line contact between the two surfaces to be welded. The volume (or area, as the calculations can be conducted in a 2-D plane if the part is symmetrical) of the triangular peak should equal the volume of the free space between the faces to be welded. This could be easily approximated with the areas of the two regions in a 2-D drawing. The melted material contained by the energy director or peak area should have an equal volume of space available to it in order to obtain a proper weld.

The welding space or volume (the area in a 2-D cross-section drawing) should be at least three times the volume (or area) of an energy director for a butt joint design. This ratio increases as the angle decreases below 90°. Angles below 60° should not be considered.

The design shown in Fig. 5.16 provides a strong butt joint. This joint is difficult to mold, however, because of the clearance on both sides of the groove. The base of the energy director should be 0.25 times the wall stock. The angle should not exceed 90°. Usual values vary between 60° and 90°. The tongue width should be approximately half the wall thickness.

Equation 5.1 provides a formula to calculate the volume of polymer contained by the energy director for symmetrical welds (see Fig. 5.16).

\[
V_{\text{Energy Director}} = 0.125t \left[\frac{\pi d^2}{4} - \frac{(d - 0.25t)^3}{4} \right]
\] (5.1)
The following notation is used:

\[t = \text{wall thickness (stock)} \]
\[d = \text{part diameter at the tip of the energy director} \]

To calculate the groove space needed:

\[
V_{\text{joint}} = 0.125t \left[\frac{(d + 0.5t)^2}{4} - \frac{(d - 0.5t)^2}{4} \right]
\]

(5.2)

The butt joint step design is stronger than a pure tongue-and-groove design. The material flows into the slip fit clearance (Fig. 5.17), creating a seal that has good shear strength as well as tension strength. This design is based on an isosceles triangle. The height of the triangle should be a minimum of 0.5 mm (0.02 in.), and the base should be no less than 1 mm (0.04 in.).

Figure 5.18 shows other possibilities available in designing energy director joints or tongue-and-groove joints.

5.1.4.4 Shear Joint Design

Crystalline polymers require a joint design that provides a shearing action as the welding occurs. Figure 5.19 shows a typical shear joint. It should be noted that interference varies based on part dimensions. For small components with any dimensions in the \(X, Y, \) or \(Z \) direction less than 20 mm (0.75 in.), the interference should vary between 0.2 and 0.3 mm (0.008 to 0.012 in.). For medium-sized components with any dimensions between 20 and 40 mm (0.75 to 1.5 in.), the interference should increase to 0.3 up to 0.4 mm (0.012 up to 0.016 in.). Finally, for large part dimensions, which exceed 40 mm (1.5 in.), the interference should be between 0.4 and 0.5 mm (0.016 and 0.02 in.).
Figure 5.18 Variations of the butt joint design: (a) flat step; (b) double step; (c) flush step; (d) double flush step

Figure 5.19 Shear joint design

The minimum lead-in recommended is between 0.5 and 0.6 mm (0.02 and 0.024 in.). The depth of the weld is related to the wall thickness and should be 1.25 to 1.5 times the wall stock.

The initial contact for this type of joint is limited to a small recess area in either of the parts. The recess helps the alignment of the parts during the welding process, which starts by melting the surfaces immediately on contact. Once the initial melting takes place, the parts continue to melt along the vertical walls, sliding together in a shearing process. The shearing action of the two melt surfaces eliminates possible leaks, resulting in good, leak-free seals.
Figure 5.20 Variations of the shear joint design: (a) shear wedge; (b) flat shear; (c) guided shear; (d) control shear; (e) double shear; (f) double split shear

Figure 5.20 shows a few variations of the basic shear joint design. The joint designs shown in (d), (e), and (f) are mostly used for large parts (in excess of 80 mm). They help support the wall deflection that takes place during welding.

Figure 5.21 Shear joint designs with flash traps: (a) outside trap; (b) double trap; (c) inside trap
Symbol

50% RH (relative humidity) 25

A

additives 366
adhesive 319
adhesive failure 319, 328
aesthetic criteria 262
air intake manifolds 197
air pockets 69
air pressure 199
alignment pin 143
aluminum oxide 100
American Society for Testing & Materials 203
amplitude 86, 90–92, 94, 135, 136, 142, 143
angioplasty 214
angle of deflection 83, 273, 274, 275
anisotropic 24, 81
- shrinkage 26
annealed 209
antifreeze 262
antistatic agents 13
apparent modulus 31
aramid fibers 7, 8
arteries 214
articulated joints 346
ASTM 293
asymptotic 70
axial joint 338

B

ball bearing 200
biopolymers 6
booster 85, 89, 92
BosScrew 367
boss design 72
boundary conditions 82
British Standards Association 203
built-in preload 262
burn 290
butt joint 139

C

cadmium red 262
CAMPUS 202
carbon black 160
carbon fibers 7, 8
catalytic converter 197
centroid 76
Charpy impact test 34
circumferential velocity 124
clamping pressure 134
class A 72
clay additive 8
click 309
closed loop solution 282
CLTE 36
cohesive failure 319, 328
coining fixture 230
coining head 250
coining tools 253
cold forming 252
cold working 250
Comet 1 71
counter bore 359
cracking 353
creep modulus 31
critical dimension 340
crosslinks 2
crystallinity 3
curved waves 90
D
degree of freedom 309
De Havilland 71
delamination 329
denier 16
design algorithm 200
design point 271
dielectric 291
dies 162
DOF 309
dopants 5
draft angles 74
dried as molded (DOM) 25
DST 353
ductility 14, 18, 29, 51
durable hinge 249
dyne level 322

E
edge stress 295
EDM 291
elastic hinge 219, 226, 227, 235, 241, 243
electrical discharge machining 291
electroluminescence 5
electroluminescent polymer 5
electro-optic polymers 5
elongation at break 244
enclosure 153
encoder 96
energy director 102
enforced displacement 282
ergonomic studies 266
guides 308

F
far-field 96, 97
faster assembly 261
ferromagnetic 144
Fiat Chrysler Automobile Group 197
fiber thickness 16
fillers 366
fillet 20, 70
– radius 20
filling phase 249
fixture 91
flame treatment 325
flash 69
– trap 131
flex element 255
flow analysis 196
flow direction 26
freeze 68
frictional heat 134

friction coefficient 266
friction factor 364
fringes 293
frozen layer 249
fusible core injection molding 195

G
gain 94
gate 26, 366
– location 196, 292
geometric constant 277
glass spheres 8
glass transition temperatures 35, 335
glow 5
glycol 197
goniometer 321
graphic interpolation 20, 21, 183
grip 215
gripping fingers 130

H
HDT 35
heating plate 128, 129
hermetic joints 136
HiLo® 352
hinge parameters 243
hold time 92, 97
hook 309
Hooke’s law 28, 60
horn 85, 89–91, 95, 97
– cavity 112
hygroscopic 24, 200, 209, 210

I
ICP 5
ignition cable bracket 245
imperfections, surface 292
Indeflator 215
induction coil 145
induction-heated oven 196
inertia tool 121
infrared laser radiation 158
infrared laser tool 155
inherently conductive polymers 5
inorganic flame retardants 13
instantaneous bending moment 272
instantaneous deformation 57
instantaneous stress 271
instantaneous width 270
interfacial tension 319
interference fit 169, 191, 300
intermittent cooling 136
internal damage 101
isopropyl alcohol 330
isotropic 24
Izod impact 33

J
Japanese Industrial Standards 203
joint width 331
junction 71

K
k-method 364

L
lactic acid 6
laser welding system 152
LED 6
LEP 5
Lewis parabola 41
life of the assembly 263
light emitting display 6
light emitting polymer 5
lithium 290
living hinge 47
lost core injection molding 195
lumbar 39

M
machining tolerance 200
magnetic field 145
magnitude of error 283
manifold 195
manual assemblies 308
maximum deformation 282
- force 282
maximum strain 243
mechanical interlocking 319
megapascals 27, 28, 50
melt line 366
melt flow 69
melt-out station 196
metallic powder 145
metal safe 302
microstructural analysis 41
microtome 41
Mohr’s circle method 67
molding data record 142
molding process 250
molding repair 142
mold release 98
molecular orientation 250
moment of inertia 310
Monel 91
multicomponent 335
multimaterial 335
multipoint 203
multipolymer 335
muscovite 8

N
nanocomposites 8
nanofillers 8
necking behavior 229
nest 91
nesting 310
neutral axis 224
nodal principal stresses 283
nonlinear materials 79
nut factor 364

O
offset 248
oriented mirrors 162
O-ring 265
out-of-phase vibrations 113
overconstrained 310
overlap length 331
overmolding 196, 335

P
PA 6,6 211
paint 262
PAni 5
Parachute Industry Association 17
parametric 276
phlogopite 8
piezoelectric 86
pigments 162
pilot hole 352
pin-point gate 256
pivot 307
PLA 6
planet gears 41
plasma treatment 326
plastic deformation 310
plastic part design 52
platen rotation 344
playpen 16
PMMA 291
Poisson’s ratio 59
polarizer 292
polar moment of inertia 54
polyaniline 5
polyfluorene 5
polylactic 6
polymerization reaction 2
polymer melt 249
polyphenylene vinylene 5
polypyrrole 5
polythiophene 5
portholes 153
post-mold shrinkage 26
PPV 5
precision snap fits 302
premiation 91
preprocessing 82
press fitting 47
pressure drop 250
pressure gradient 196
proving grounds 210
PT 355
pure bending 224
Q
quick flexes 220
R
radial force 356
radial interference 215
radial stress 357
Rankine theory 65
recyclability symbols 311
regrind 143, 264
reinforcements 366
retardation 293
RF sealing 148
rib height 73
rib width 74
robot arm 196
robust tool 303
rotation joints 338
S
safety factor 45, 185
scattering 158
seal 292
secant modulus 62, 271
self-alignment 125
self-degating tool 255
self-locking angle 279
self-tapping screws 115
serviceability 311
shank design 357
shape deformation energy 67
sharp corner 20, 71
shear joints 331
shelf life 194
shelf-time 194
single-point 203
snap fitting 47
solvent 319
Soniqtwist 106
spark plugs 239
sparks 291
spherical motion 338
spherical snap fit 261
stack molds 344
steady state 122, 135, 138
strain 59
stress concentration factor 20
stress cracking 330
stress-relaxation 33
St. Venant’s theory 66
submarine gate 176
sun gear 41
surface analyst 323
surface energy 321
surface roughness 266
surface velocity 123, 124
symbols 311
T
test specimen 52
thermically conductive 5
thread angle 353
thread cutting 351
thread forming 351
three plate tool 255
throttle body 197
tolerance 36, 120, 169, 191, 217, 289, 341
torque limiter 216, 361
trailing angle 354
transducer 85, 91
transmitted torque 172
transparent 293
transverse wave 90
trapezoid 76
Tresca 66
trilobular 353
troubleshooting 326
ttrue strain 57
ttrue stress 57
turret 343
U
ultrasonic weld cycle 92
undercut 213, 276, 277
under-the-hood 239
Uni-screw 352
useful life 175, 311
UV stabilizers 13
V
vacuum 130
vacuum cups 130
van der Waals 1
visco-elastic 29, 62, 79, 227
voids 25, 47, 48, 69
volume deformation energy 67
von Mises' equation 68

W
wall thickness 68
warpage 68, 132
wavelength 94
weld line 171, 266
wetting 320
worm gear 40

Y
yarn 16
yield strain level 250
Young's modulus 8, 28, 52, 60, 64, 177

Z
zinc stearate 98